Semiconductor Package Pinouts (Bottom View)

Transistors \& FETs

Transistors can be labelled slightly differently by different manufacturers.

BC547
ECFIOP20
C547.B, BC547A, BC547B, BC547C
Exicon
ECFIOP20
BC639 $\begin{gathered}\text { Exicon 10P20 } \\ \text { C639PH179 } \\ \text { C394 }\end{gathered}$
 precautions" on how to handle these devices.

Diacs \& Triacs

Diacs are very simiar in appearance to diodes, they are glass encapsulated and
usually marked with a striee around their midder rather than at one end like a

Rotary Switches

Enclosed rotary swithes have a toothed washer with
series of numbered mating sockets in the top of the Swries of numbered mating sockets in the top of the
swith. The position of the tooth deternines how many positions the switch will have. For example, if a four
position switch is required, remove the nut and toothed washer then place the tooth in numbered socket "4",
now replace the nut. The switch is now a 4 position now replace the nut. The switch is now 4 position
type.
furthe sure handiding the washer instalation is not dislodged during

Electret Mic Inserts

Guide To Soldering

The single most common cause of circuit failure is bad solder joints. A solder joint can at first
 joint is when either the circuit board or the leg of the component has not been properly heated
to allow the solder to tow between the surfaces frely. This creates an internitent or no elec
 or if you reuse old solder. Luite often, reeneating a aad jin will cure the problem but in a lot of
cases, the old solder will need to be remoed and som enew solde applied.

240V Mains Wiring

WARNING 240 Volts Can Kill!

Aresistor will linit the
(see Ohms Law) This (see onhs Law). This means a resistor can be used to run a a ow voltage device from a
limiting the required power to a predetermined level. Resistors are not polarity sensitive.
Tolerance The tolerance of a resistor refers to how close its actual resistance has to be to the value marked on it. Common tolerances are 5% and 1%.
Wattage Depending on the power reauirements of a circuitr resistor watage needs to be calculated to ensure that they
don't over heat. The more common ratings available for resistors are $1 / 4$ watt $1 / 2$ watt 1 Watt $\& 5$ watt The don't over heat. The more common ratings avaliable for resistors are $1 / 4$ Watt $1 / 2$ Watt, 1 Wat
watage required for different circuits can be calculated by using the power formula described later.
Values Because it would be impractical to carry every possile value of resistor, they are avalable in pre-selected ranges. These ranges are known as prefered values. The E 12 series, , which is the most common series, (12 Values per
100 is denoted as: $10 \Omega, 12 \Omega, 15 \Omega, 18 \Omega, 22 \Omega, 27 \Omega, 33 \Omega, 39 \Omega, 47,56 \Omega \Omega .68, .82 \Omega$
 The $E 24$ series has 24 values per 10 which includes the above sequence plus these extra values: $11 \Omega, 13 \Omega, 16 \Omega$,
$20 \Omega, 24 \Omega, 30 \Omega, 36 \Omega, 43 \Omega, 51 \Omega, 62 \Omega, 75 \Omega, 91 \Omega$.

PCB Track Widths

adequate current to
components withut sigiticant temperature rise. For a
10° c temperature ise, minimum track widths are:

Current	Width (inches)	Width (mm)
0.5A	$0.008^{\prime \prime}$	0.20
0.75A	$0.012^{\prime \prime}$	0.30
1.25A	0.020"	0.50
2.5 A	0.050"	1.27
4.0A	$0.100^{\prime \prime}$	2.54
7.08	${ }^{0.200 "}$	5.08
10.0A	0.325"	8.25

Static Precautions

 not be completely destroyed but their reliaibilityand life
 but their reliaibily and life span may be uusstionable atere electrostaz discharge.

Some tips to help prevent ESD damag
Don't remove any components from their antistatic
material (bag or velostata) until you are ready to material (bag or Velostat) until you
instal them on the circuit board.
instar them on the circriit board.
Try not to touch their
Whe
We recommend you purchase an antistatic strap
(Altronics Cat. No. T 4002) which can be earthed on any metal plumbing fixtures in your house or
conected to the earth pin on a DC power supply onnected to the earth pin on a DC power supply
Connected to the earth pin on a DC
OTE: Do not connect the strap directly
the mains socket earth pin!

Power (Watts)

Where: $V=$ Volts, $I=$ Amps
$\mathrm{P}=\mathrm{Powe}$
This formula is used in many situations, from
calculating tre calcuating the wattage of a resistor, to working out if
an appliance will overload a particular power source i an appliance win overioad a paraic
$P=I^{2} \times R$

Ohm's Law

Ohms law is undoubtedy the most commonly used formula in electronics today. It defines the relationship
between voltage, current and resistance. .ts uses vary from calculating the value of a resistor to protect a LED
(Light Emiting Diode) foom destruction when run on a higher voltage supply than recommended, to calculating the current that a heater element will draw.

RMS Voltage Equivalents

For a given AC volage, the RMS equivalent will be the same as the DC voltage that gives the same heating
effect as the AC volage in question. Take note that the quantity V is is the value from the zero crossing of the
wavetorm to the peak, not trom the negative peak to the postive peaz
$\mathrm{V}_{\text {RMS }}$ (Sine) $=\mathrm{V}_{\mathrm{P}} / \sqrt{2=\mathrm{V}_{\mathrm{P}} \times 0.707}$ $\mathrm{V}_{\mathrm{RMS}}$ (Triangle) $=\mathrm{V}_{\mathrm{P}} \times 0.577$

The RNS value of a suure waveform is equal to its peak
value, as the magnitude of a suare way value, as the magnitude of a square wave remains
constant over the hall-period. (Assuming a 50% duty

Formula Wheel

Using this formula wheel it is possible to calculate power, volts, amps or resistance for a given problem
ie. if y you tive ie. if you have two of the variables, for example po
and volts, it is possible to fond the amps in a circuit. This wheel expresses volts as V, howevere if you are
studying old text books, you may see volts shown as E.

Resistor

Resistros in Series When two or more

When two or more resistors are placed in series, ini line
with each other), the network will change. The the new resistance of the resistor from:-
$\mathrm{R}_{\text {Total }}=\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3+$ etc...

$$
\square_{\mathrm{R} 1} \square_{\mathrm{R} 2}
$$

$$
\mathrm{R}_{\text {Total }} \frac{1}{\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\text { etc.... }\right)}
$$

Capacitors

Capacitors in Series
Capacitors in series
Capacitiors in series can be calculated by:
Note: The new value will always be lower.
HHH|
$\mathrm{C}_{\text {Total }}=\frac{1}{\left(\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}+\frac{1}{\mathrm{C}_{3}}+\text { etc....) }\right)}$
Capacitors in Parallel
When apacitior are placed in
paralle they can re simply
added together.
$\mathrm{C}_{\text {Total }}=\mathrm{C1}+\mathrm{C} 2+\mathrm{C3}+$ etc....
Note: The new capacitance

Note: The new capacitance
value will be be higher.

More handy data available from the Altronics website at: wWW.altronics.com.au

Light Emitting Diode Data

Logic Gates

OR Gate: Output is a logic " 0 " only if both inputs are "0". A
logic 11 " at e tither or both inputs produces a logic 11 " output.
AND Gate: Outputis s logic " 1 " only if both inputs are " 1 ". A logic "0" at either or both inputs produces a logic "0" output.

NoR Gate: Output is as logit "1" only if both inputs are " 0 ". A,
logic "1" at either or both inputs produces a logic " 0 output
NAND Gate: Output is a logic "0" only if both inputs are " Alogic "
outp
Inverter or Not gate: Output is a logic "1" when input is
"0". Output is a logic "0" when input is 11 ". ie Inverts the "input state

DFip-FIop: Transers the input at Dto the output at Q signal at C. No change in in any outputs on the falling edge of signa lac. . .
the clock pulse.

Trimpots

"Trimpots", or trimmer potentiometers are marked using the tor. ie. 104 marking is 10 plus mutitipier of 4 (i.e. 0000 .
so $104=100,000$ so $104=100,000 \mathrm{ohm}=100 \mathrm{ohm}$
An Easy Way to Determine a Value is as Follows:
Wite down the fist Wirte down the first two digits, one and then zero so you end
up with the unber 10. Next to this uumber wite the same
number f zenser number of eroros as the last digit on the trimpot, in this sexam-
ple four ple four zeros. You end up with the digits one, zero, zero,
zero, zerond and zer. Put together you get the number
10000. This is the endue of the 100000. This is the value of the trimpot in ohms (Ω). To
convert this number into kilo ohms (kS) place a decima
 100). So the value is 10002. To get the value in meg onm
(MM). Move the decimal place a further three digits tot the
left. You then get. 100000 (or 0.1). So the value is 01 Mo

A capacitor works on the principal of having two conductive plates which are very close And are parallel to each other. When a charge is appied to one plate of the capaciorir the electrons will generate an approximately equal, but opposite charge on the other
plate of the capacitor Capacitors will pass AC current, but will block DC current. A capacitor can also be be used to smooth out voltage ripple, as in DC power supplies. apacitance is measured in F Farads (F)
Capacitors have five parameters. Capacitance (Farads), Tolerance (\%), Maximum Working Voltage (Volts). Surge Voltage (Votts) and leakage. Because a Farad is a very cro tarads. Working Voltage
hormal operating conditions.
ormal operating
he maximum instantaneous voltage a capacitor can withstand. It the surge voltage is exceeded over too long a period there is a very good chance that the capacitor will be
delstroyed by the voltage punching' through the insulating material inside the casing o
 ated surge voltage
Leakage
Refers to the amount of charge that is lost when the capacitor has a voltage across its
俍
 olerance
As with resistors, tolerance indicates how close the capacito is to its noted value.
These are normally w witten on the alager capacaitios and enooded on the small ones.
Toder

Code	Tolerance	Code	Tolerance
c	$\pm 0.25 \mathrm{pF}$	D	$\pm 0.5 \mathrm{pF}$
E	$\pm 1 \mathrm{pF}$	G	$\pm 2 \%$
J	$\pm 5 \%$	k	$\pm 10 \%$
${ }_{\text {L }}$	$\stackrel{ \pm}{ \pm 15 \%}$	M	$\pm 20 \%$
	$\pm 30 \%$	z	+80-20\%

Capacitor Markings

umerically directly onto the capapactor itself. The second is is to se we the Elf co coding ysystem. EA coding
 presents the toloranane with the third being the multipier. The fourth character
representis the tolerance.
When the EIA code is ssed, the value will always be in Pico-Frads see Decimal
Kutipiers 1 .:
his exands to:
$\begin{array}{ll}3= \\ 3= & 1,000\end{array}$
= 10% (see Capacitor Tolerance for istings)
hen we combine these numbers together
$0 \times 1,000=10,000 \mathrm{pF}=0.01 \mathrm{~F}$,

at $\times 10 \%$ tolerance
xxample 2 : $: 335$

This expands to:
$3=3 ; 3=3 ; 5=x 100,000 ;$
$k= \pm 10 \%$

Potentiometers

Potentiometers (usually called pots) are These are linear and logarithmic types. These relate to the change in resistance th respect to orotaion Legarithmic pots are commonly used in
Nume control applications. inear pots are commonly marked with

For example
r10
$100 \mathrm{~K}=100 \mathrm{kohms}$ - linear

Phone: 1300797007
Fax: 1300789777 Fax: 1300789777
www.altronics.com.au

Follow @AltronicsAU www.facebook.com/Altronics

Voltage Regulator Data

Diode briges are apackage of four diodes
conneted in aull wave bridge revtifer
configuration configuration. They can be encansulated in plastio
or steel/epoxy cases or steelepoxy cases, and even DIL and surface
mount packages for the

 negative terminal diagonally oppositie it. Plastic
square packhages often have all terminal markings
 while still maintaining a reasonable current capacity, and usually have their
Using Diodes

Bzx85C4v3		4.3 Zener			
0.4 W (400 mA) Zener		1W Zener		${ }^{5} \mathrm{~W}$ Zener	
Diode Table		Diode Table3vaIN4728		Diode Table	
3v3	$1{ }^{1174}$			3 3	1 1N728
3 3 6	1 1177	$3 V 6$	1 14729	3 3	1 15533
3V9	1 1748	3 9	1 14730	5 V 1	1 15338
$4{ }^{4}$	1 1749	$4{ }^{4}$	1N4731	9v1	1 1N5346
$4{ }^{4} 7$	1N750	$4{ }^{4} 7$	1 14732	12 V	1N5349
5 V 1	1 1175	$5{ }^{5} 1$	1 14733	13 V	1N5350
5 5 6	1N752	5 5 6	111734	15 V	1 1n5352
$6 \mathrm{~V}_{2}$	1N753	$6{ }^{2}$	1 14773	18 V	1 1N5355
$6{ }^{6}$	1N754	6v8	1 1N736	22V	1 N5358
7v5	1N755	7 V	1 1N737	24 V	1N5359
$8{ }^{2}$	1N756	8V2	1 1N738		
9v1	1N757	gv1	1 11739		
10V	1N758	10 V	1 1N770		
11 V	1 1962	11 V	1 14741		
12 V	1 1963	12 V	1 1N774		
13V	1 1964	13V	1 1N773		
15V	1 1965	15V	1 1N744		
18 V	1 1967	16 V	1 1N745		
20 V	1 19968	18 V	1 1N774		
${ }^{22 V}$	1 1969	20 V	1 1N747		
${ }_{24 V}$	1 1990	22 V	1 11748		
27V	1 1971	24V	1 1N7749		
30 V	1 1972	27V	1 1N750		
${ }^{332}$	${ }^{1 \times 973}$	${ }^{302}$	1 144751		
36 V	1 19974	${ }^{336}$	${ }^{114752}$		
		${ }^{366}$	${ }^{1 \times 4753}$		

on the device. The same specifications for adjustable
regulators indicate the range of be achieved through exememal of componene output which can

Basic $1 A$ regulated cirruit with fixed regulator
 the output votage. When a bridge rectifiri is is used, the DD voltage before the regulator ensure that there is at teast 3 volts on the inutt pin over and above the output voltage
of the regulator. Note the maximum input voltage to the regulator should not exceed $35 V$.

Boosting current output of voltage regulator
When more than one amp of current is reauired there are a number of options avilable. One way is to put in a more expensivive hisher current regulator and the other is to boost the one amp device with a bypass transistor. The following circuit shows the

When a variable power supply is reauired, this circuitit san ideal solution. The diodes are not essential but are recommended to give short
voltage to the regulator should not exceed $40 V$.

Current boosted regulator using LM317T or LM350T

Express Order $\begin{aligned} & \text { Phone: } 130079700 \\ & \text { Fax } 1300789777\end{aligned}$
Hotines: $\begin{aligned} & \text { Fax: } 1300789777 \\ & \text { www.altronics.com.au }\end{aligned}$

