Perth (Head Office)
174 Roe Street
Perth WA 6000

Sydney
15 Short Street Auburn NSW 2144

Melbourne

891 Princes Highway
Springvale VIC 3171

International
Phone: 61894282188
Fax: 61894282187

Product Specification Sheet

Part No	Description	Supplier Ordering Info
C 0888	SPK W/BOX ARC 6.5"100V 10W	PBC 10/TCO

Rayleigh House
21 Queen Anne's Place, Bush Hill Park North London EN1 2QB Tel: 02083605988 Fax: 02083602640 E-mail: amsac@btinternet.com
Web-site: www.amsacoustics.co.uk

Partners:
P.W. Barnett moa, masa, f.lnst. sce, maes J.L. Goddard (administration)

Associates:
H.M. Goddard mioa, m.Inst, sce, maes
P.N. Huffer b.sc., мוоa

Loudspeaker Test

Report

Manufacturer: Penton (UK) Ltd

Type: Cabinet

Model: PBC 10/TCO

For: Penton (UK) Ltd

Report No.: 1191/LS/PBC 10/TCO

Prepared By: A. N. Stacey B.Sc., AMIOA
© AMS Acoustics, London

Electro-Acoustics:
Sound System Design
Conference Systems
Reverberation Enhancement
Emergency Evacuation System Design
Loudspeaker \& Microphone Testing

Environmental Acoustics:

Speech Intelligibility

1. Object

1.1. The object of this Report is to present measurements of the acoustic performance of the PBC 10/TCO device.
2. Scope
2.1. The following characteristics were measured

- On-axis frequency response
- Polar response
- Impedance
- Applied voltage
- On-axis $3^{\text {rd }}$ octave band sound pressure level
from which the following are calculated
a) Directivity Index (dB), tabulated and graphical
b) Directivity factor, Q
c) Effective octave band impedance
d) Octave band Sensitivity (dB @ 1m, 1W/oct)
e) Overall Sensitivity:
dBlin @ 1m, 1W
250Hz-4kHz @ 1m, 1W
Speech shape @ 1m, 1W
f) Acoustic Power (dB-PWL @ 1W), tabulated and graphical
g) Octave band Power Apportionment (\%)
h) Impedance bode plot
i) Expected maximum Sound pressure level (dB @ 1m)
j) Frequency response chart
k) Polar response charts

3. Method

3.1. The device was mounted in Free Space as shown in figure 1 Mounting method C.
3.2. The measurements were made in an anechoic chamber.
3.3. Measurements were made as detailed in AMS Test Method document No. IR/1a/LS/Meth.
3.4. All measurements were made in general accordance with BS 6840: Part 5: 1995.

4. Results

4.1. The On-axis $3^{\text {rd }}$ octave frequency response of the device is shown graphically in the appendix.
4.2. The Impedance bode plot of the device is shown graphically in the appendix.
4.3. Polar plots of the device are shown graphically in the appendix.
4.4. Tabulated values of Directivity index, Directivity factor, Sensitivity, Acoustic Power, Power Apportionment, Impedance and Maximum SPL are shown in the Summary data sheet given in the appendix.
4.5. The Directivity Index has been calculated using Gerzon' equal angle, weighted area method.

5. Notes

5.1. Sensitivity

The octave band sensitivity is produced in its useful form for calculations. It should be noted that the octave band sensitivity is given as dB @ 1m, 1W/Oct. To determine the output when only the overall power is known, then only the overall dBA or dBlin values should be used. For more detailed information refer to AMS Acoustics Data Sheet 'Loudspeaker Sensitivity - Interpretation of Results'.
5.2. Polar Plots

For convenience each polar plot has been normalized to 0 dB . For this reason caution is advised when comparison of levels between octave bands is made. The reference axis frequency response should be used for comparison purposes.

6. Engineers Notes

Reference plane located parallel to driver and at rear of cabinet.
Reference point located concentric to driver and at rear of cabinet.

Loudspeaker Information

Manufacturer: Penton (UK) Ltd
Model Code: PBC 10/TCO
Type: Cabinet
Colour: White
Serial No.: None
Batch No. : None
Other Markings : None
Backbox: As Supplied
Grille : As Supplied
Weight (grammes) : 1400
Depth (mm) : 91 mm
Width (mm) : 332 mm
Height (mm) : 244 mm
Special Features: NM
Internal Details
Driver Types/Sizes : 150 mm Coaxial driver Driver Serial No.(s) : None
Driver Markings: Penton Label
Damping Material: None
Available Tappings : $10 \mathrm{~W}, 5 \mathrm{~W}, 2.5 \mathrm{~W}, 1.25 \mathrm{~W}(100 \mathrm{~V})$
Electrical Details
Resonant Frequency(s) : See Impedance Plot
Cross-Over Frequency(s) : NM
Nominal Impedance (ohms): 8
Inductance: NM
Capacitance: NM
NM $=$ Not Measured, $N A=$ Not Applicable

Originator:
Countersigned:

Manufacturer : Penton (UK) Ltd
Model Code: PBC 10/TCO
Mounting : Half-Space, Free Field
Transformer Tapping : 10W

Reference Axis Located at : 0 degrees

	Frequency (Hz)							dB	dBA
Parameter	125	250	500	1k	2k	4k	8k		
Axial Q	2.5	2.0	1.4	3.7	5.9	9.5	12.1		
Directivity Index (dB on Axis)	4.0	3.0	1.5	5.7	7.7	9.8	10.8		
Sensitivity (dB @ 1m, 1W/Oct)	77	85	88	92	92	91	90	89	88
Sensitivity(dB @ 1m, 1Wt)250Hz-4kHz								89	89
Sensitivity(dB @ 1m, 1W)Speech Shape								86	83
Acoustic Power (dB-PWL @ 1W)	77	85	89	88	84	82	82		
Apportioned Power (\%)	18	19	15	12	8	10	15		
Effective Impedance (Ohms)	887	824	894	1156	1788	1499	829		
Expected maximum SPL (dB @ 1m)	80	88	89	92	91	91	92	99	98

Test Signal: Pink Noise(100Hz-10kHz)

PBC 10/TCO

Wide Band Frequency Range
(Valid from 60 Hz to 20 kHz)

Note: The wide band frequency response is derived using MLS methods and does not relate to the sensitivity values given in the summary table.

© AMS Acoustics, London

Loudspeaker Mounting Methods

Mounting Method A
Loudspeaker Mounted in a Reflective Baffle

Mounting Method B
Loudspeaker Mounted in an Absorbent Baffle

Mounting Method C
Loudspeaker Mounted on a Reflective Baffle

Mounting Method B
Loudspeaker Mounted on an Absorbent Baffle

Mounting Method E

Loudspeaker not Attached to any
Surface and Radiation Unaffected by
nearbv Reflecting Surfaces

